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Abstract 

However it is possible to use of numerical methods such as beta-Newmark in order to 
investigate the structural response behavior of the dynamic systems under random sea wave 
loads but because of necessity to analysis the offshore systems for extensive time to fatigue 
study it is important to use of simple stable methods for numerical integration. The modified 
Euler method (MEM) is a simple numerical procedure which can be effectively used for the 
analysis of the dynamic response of structures in time domain. It is also very effective for 
response dependent systems in the field of offshore engineering. An important point is 
investigating the convergence and stability of the method for strongly nonlinear dynamic 
systems when high initial values for differential equation or large time steps are considered for 
numerical integrating especially when some frequencies of the system is very high. In this paper 
the stability of the method for solving differential equation of motion of a nonlinear offshore 
system (tension leg platform, TLP) under random wave excitation is presented. The key point of 
suitability of MEM for solving the TLP system is that the maximum frequency of the system is 
about 0.5 Hz. The stability criterion and the convergence of the numerical solution for critical 
time steps are numerically discussed.  
Keywords: Tension leg platform - Ocean wave - Stochastic - Nonlinear 
  
Introduction 

It is obvious that there is a demand 
for oil exploitation in deep water. By 
increasing of water depth the 
environment will be more severe and 
therefore some innovative structures are 
required for economic production of gas 
and petroleum in deep water. An 
engineering idea is the minimization of 
the resistance of structure to 
environmental loads by making the 
structure flexible. This structural 
flexibility causes nonlinearity in 
structural stiffness matrix because of 
large deformations. Wave loading on the 
ocean structures is complex. Since they 
are compliant, these structures must be 
designed dynamically.  

Fig. (1) shows different components of 
the TLP made up of vertical and 
horizontal elements on the upper 
structure and vertical tendons connecting 
the structure to a foundation on the 
seabed. The extra buoyancy over the 
platform weight ensures  
that the tendons are always kept in 
tension. As mentioned, the TLP is 
essentially a  
semi-submersible vessel which is 
moored to the sea floor by a number of 
pretensioned tendons. The tendons are 
connected at the sea floor to a template 
which is piled in place. It is significant to 
note that unlike the case of normal pile 
foundations, the piles experience tension 
rather than compression. The natural 
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periods of the structure in surge, away 
and yaw must be greater than the wave 
periods of significant energy. The heave, 
roll and pitch natural periods, on the 
other hand, being much shorter, must be 
less than the significant wave energy 
periods.  
Angelides et al. (1982) considered the 
influence of hull geometry, force 
coefficients, water depth, pre-tension 
and tendon stiffness on the dynamic 
responses of the TLP. The floating part 
of the TLP was modeled as a rigid body 
with six degrees of freedom. The 
tendons were represented by linear axial 
springs. Wave forces were evaluated 
using a modified Morison equation on 
the displaced position of the structure 
considering the effect of the free sea 
surface variation. 
Morgan and Malaeb (1983) investigated 
the dynamic response of TLPs using a 
deterministic analysis. The analysis was 
based on coupled nonlinear stiffness 
coefficients and closed-form inertia and 
drag-forcing functions using the Morison 
equation. The time histories of motions 
were presented for regular wave 
excitations. Chandrasekaran and Jain 
(2001 and 2002) investigate the 
structural response behavior of the 
triangular TLP under several random sea 
wave loads and current loads in both 
time and frequency domain. They study 
the effect of coupling of stiffness 
coefficients in the stiffness matrix and 
the effect of variable submergence of the 
structure, due to varying water surface, 
on the structural response of the 
triangular TLP. 
A Comprehensive study on the results of 
tension leg platform responses in random 
sea considering all structural and 
excitation nonlinearities is presented [7]. 
This kind of interpretation of the results 
is necessary for optimum design of TLP.  
There are several issues in design 
optimization of TLP. Geometrical 

optimum design of TLP hull is presented 
by using genetic algorithm method under 
regular sea waves [8]. Such a method 
can be used to extend the structural 
optimization under random wave loads. 
Optimum pretension of tendons can be 
determined based on minimum down 
time or maximum fatigue life. In 
minimum down time the nonlinear time 
histories of deformations and 
accelerations are investigated and in 
fatigue study it is used first order 
reliability method to estimate life time of 
tendons.  
To work on the closed form solutions of 
TLP can be very useful to have a deep 
view of the structural behavior because 
of highly nonlinearities in the real 
structure. A continuous model for 
vertical motion of TLP considering the 
effect of continuous foundation has been 
reported [9]. The exact solution of the 
heave response of the structure can be 
useful both in initial design of tendons 
and verification of the complete coupled 
model responses. 
Added mass fluctuation is a important 
point because of direct effect in life time 
of tendons when fatigue analyses are 
carried out. Fluctuating added mass has a 
direct relation to heave response of the 
hull structure. The effect of added mass 
fluctuation on the heave response of 
tension leg platform has been 
investigated by using perturbation 
method both for discrete and continues 
models [10-11]. Also the analytical 
solution derived can be used to verify the 
numerical results of the complete model. 
Other important problem is investigation 
of the effects of radiation and scattering 
on the hull and tendon responses. An 
analytical solution for surge motion of 
TLP was proposed and demonstrated 
[12-14], in which the surge motion of a 
platform with pre-tensioned tethers was 
calculated. In that study, however, the 
elasticity of tethers was only implied and 
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the motion of tethers was also simplified 
as on-line rigid-body motion 
proportional to the top platform. Thus, 
both the material property and the 
mechanical behavior for the tether 
incorporated in the tension leg platform 
system were ignored. When this 
simplification was applied, no matter 
what the material used was or what the 
dimension of tethers was, the dynamic 
response of the platform would remain 
the same in terms of the vibration mode, 
periods and the vibration amplitude. An 
important point in that study was 
linearization of the surge motion. But it 
is obvious that the structural behavior in 
the surge motion is highly nonlinear 
because of large deformation of TLP in 
the surge motion degree of freedom 
(geometric nonlinearity) and nonlinear 
drag forces of Morison equation. 
Therefore the obtained solution is not 
true for the actual engineering 
application. For heave degree of freedom 
the structural behavior is linear, because 
there is not geometric nonlinearity in the 
heave motion degree of freedom and 
drag forces on legs have no vertical 
component. Similarly an analytical 
heave vibration of TLP with radiation 
and scattering effects for damped 
systems has been presented [15]. Similar 
method is presented for hydrodynamic 
pitch response of the structure [16]. 
An important computational problem in 
nonlinear dynamic analysis of structures 
under combined wave and wind 
excitation in order to fatigue analysis in 
wide domain of time is the efficiency on 
the numerical method used for time 
integration of equation of motion. It is 
discussed on the convergence and 
stability of the modified Euler method 
(MEM) for dynamic analysis of the 
structures that their frequencies are 
limited between two distinct upper and 
lower bounds [17]. 

A computer program (SNATELP) is 
developed to stochastic and nonlinear 
dynamic analysis capable of solving 
large displacement problem dynamically 
in the time domain based on Modified 
Euler method time integration.  
 

 
 

Fig. 1- TLP configuration and components 
 
 

Equation of Motion 
The equation of motion of the 

triangular TLP under a regular wave is 
given as: 

 

)}({}]{[}]{[}]{[ tFXKXCXM =++ &&&   (1)   

 

where ][],[ CM and ][K  are the matrices 
of mass, damping and stiffness 
respectively, }{X , }{X&  and }{X&&  are the 
structural displacement, velocity and 
acceleration vector respectively and 

)}(tF  is the excitation force vector.  
 
Mass matrix, [M] 

Structural mass is assumed to be 
lumped at each degree of freedom. 
Hence, it is diagonal in nature and is 
constant. The added mass, Ma, due to the 
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water surrounding the structural 
members and arising from the modified 
Morrison equation is considered up to 
the mean sea level (MSL) only. The 
fluctuating component of added mass 
due to the variable submergence of the 
structure in water is considered in the 
force vector depending upon whether the 
sea surface elevation is above (or) below 
the MSL. The mass matrix of TLP is 
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where MMMM HHWWSS === and 
aSSSSSS MMM +=′ and aWWWWWW MMM +=′  

and aHHHHHH MMM +=′ . M is the total 
mass of the entire structure, RRM is the 
total mass moment of inertia about the x 
axis = 2

xMr , PPM  is the total mass 
moment of inertia about the y axis = 

2
yMr , YYM  is the total mass moment of 

inertia about the z axis = 2
zMr , rx is the 

radius of gyration about the x axis, ry is 
the radius of gyration about the y axis, 
and rz is the radius of gyration about the 
z axis. The added mass terms are: 
 

dlCD
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m
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∫=
lenght

aSSaSS dMM                                     (4) 

aRSM  is the added mass moment of 
inertia in the roll degree of freedom due 
to hydrodynamic force in the surge 
direction. aRWM  is the added mass 
moment of inertia in the roll degree of 
freedom due to hydrodynamic force in 
the sway direction. aRHM  is the added 

mass in the roll degree of freedom due to 
hydrodynamic force in the heave 
direction. aPSM  is the added mass 
moment of inertia in the pitch degree of 
freedom due to hydrodynamic force in 
the surge direction. aPWM  is the added 
mass moment of inertia in the pitch 
degree of freedom due to hydrodynamic 
force in the sway direction.  aPHM  is the 
added mass in the pitch degree of 
freedom due to hydrodynamic force in 
the heave direction. The presence of off 
diagonal terms in the mass matrix 
indicates a contribution in the added 
mass due to the hydrodynamic loading. 
The loading will be attracted only in the 
surge, heave and pitch degrees of 
freedom due to the unidirectional wave 
acting in the surge direction on a 
symmetric configuration of the platform 
about the x and z axes). 
 
Stiffness matrix of the TLP 

The coefficients, KAB, of the stiffness 
matrix of the triangular TLP are derived 
as the reaction in the degree of freedom 
A due to unit displacement in the degree 
of freedom B, keeping all other degrees 
of freedom restrained. The coefficients 
of the stiffness matrix have nonlinear 
terms due to the cosine, sine, square root 
and squared terms of the displacements. 
Furthermore, the tendon tension changes 
due to the motion of the TLP in different 
degrees of freedom makes the stiffness 
matrix response-dependent. The stiffness 
matrix [K] of a TLP is: 
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In the stiffness matrix the presence of 
off-diagonal terms, reflects the coupling 
effect between the various degrees of 
freedom and the coefficients depend on 
the change in the tension of the tendons, 
which is affecting the buoyancy of the 
system. Hence, the [K] is not constant 
for all time instants but the coefficients 
are replaced by a new value computed at 
each time instant depending upon the 
response value at that time instant. The 
stiffness matrix of the four-legged square 
TLP is taken as suggested by Morgan 
and Malaeb (1983).  
 
Stiffness of Surge direction (Fig. 2) 

By giving an arbitrary displacement x 
in the surge direction, the increase in the 
initial pre-tension, in each leg, is given 
by: 

 

( ) lAEllxTsurge /22 −+=∆               (6) 

where A is the cross-sectional area of the 
tether, E is Young’s Modulus of the 
tether, surgeT∆  is the increase in the initial 
pre-tension due to the arbitrary 
displacement given in the surge degree 
of freedom, l is the length of the tether, 
and x is the arbitrary displacement in the 
surge degree of freedom. 
Equilibrium of forces in the surge 
direction gives. 
 

xsurgeSS TTnxK φ∆+= sin)( 0               (7)  

where 0T  is the initial pre-tension in the 
tether, and xφ  is the angle between the 
initial and the displaced position of the 
tether for unit displacement given in the 
surge direction. 

22
sin

lx

x
x

+
=φ                           (8) 

Putting Eq. (8) in Eq. (7), we get: 
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Equilibrium of forces in the heave 
direction gives: 
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where   
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Rearranging terms, we get: 
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Summation of moments along the pitch 
direction gives: 

hK KhxKxK SSPSSSPS −=−= or       (14) 

where h  is the distance of the center of 
gravity (CG) from the base of the 
pontoon. The force xKSS  acts at the 
bottom of hull and gives rise to a 
moment along pitch direction which is 
considered at CG. The negative sign 
occurs due to counterclockwise moment 

 hxKSS . 
 

 
Fig. 2- Displacement in surge degree of 

freedom 
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Stiffness of Heave direction  
By giving an arbitrary displacement z 

in the heave direction, the equilibrium of 
forces in the heave direction gives: 
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where g is the acceleration due to 
gravity, ρ is the mass density of water 
and Dc is the diameter of the column. 
 
Stiffness of Roll direction (Fig. 3) 

By giving an arbitrary rotation xθ  in 
the roll degree of freedom and assuming 
symmetry, the change in the initial 
pretension, in each leg, is given by: 

rollxxroll Tb
l
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Summation of the moments of the 
resulting forces about the x-axis gives: 
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Equilibrium of forces in the heave 
direction gives: 

0
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where rollT∆ is the increase in the initial 
pre-tension in the tether due to the 
arbitrary rotation given in the roll degree 
of freedom, rollT ′∆  is the increase in the 
initial pre-tension in the farther tether 
due to the arbitrary rotation given in the 
roll degree of freedom. 

 
Fig. 3- Displacement in roll degree of freedom 
 
Damping matrix, [C] 
Assuming [C] to be proportional to [K] 
and [M], the elements of [C] are 
determined by the equation given below, 
using the orthogonal properties of [M] 
and [K]:  

KMC β+α=                        (20) 

α  and β  are constant. This matrix is 
calculated based on the initial values of 
[K] and [M] only. 
 
Hydrodynamic force vector, {F(t)} 
 
The problem of suitable representation 
of the wave environment or more 
precisely the wave loading is the 
problem of prime concern. Once the 
wave environment is evaluated, wave 
loading on the structure may be 
computed based on suitable theory. In 
this work the water particle position η  is 
determined according to Airy’s linear 
wave theory: 

)cos(),( tkxAtx ω−=η                         (21) 

where A is the amplitude of the wave, k 
is the wave number, ω  is the wave 
frequency and x is the horizontal 
distance from the origin.  
In order to incorporate the effect of 
variable submergence which is an 
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important aspect of hydrodynamic 
loading on TLP, Chakarbarti’s approach 
will be adopted in which instantaneous 
sea surface elevation is taken as the still 
water level (or water depth). The 
fluctuating free surface effect can be 
significant when the wave height cannot 
be ignored in comparison to the water 
depth. Chakarbarti (1971) suggested the 
following form of the water particle 
velocity u&  

)sinh(
)cosh()cos(
η+

ω−ω=
d

kztkxAu&            (22) 

where η is the instantaneous water 
surface elevation and is given as Eq. (1). 
likewise, the water particle acceleration 
also gets modified. 
In stochastic modeling, sea waves are 
commonly characterized by their PSDFs. 
Water particle kinematics, at different 
location on the structure, are considered 
to be derived processes and these need 
not be specified in addition to the sea 
surface elevation. By considering the 
random process as a linear superposition 
of a large number of independent waves, 
its distribution becomes Gaussian. 
Depending upon the fetch conditions, 
several analytical expressions exist for 
the approximation of the sea surface 
elevation spectrum (i.e. its PSDF). A 
well-known spectrum model for ocean 
waves is Peirson-Moskowitz (P-M) 
model. The modified P-M spectrum 
model is assumed to adequately 
represent the sea state. It is given by: 
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where sH  is the significant wave height 
in m, zT is zero up crossing period in s 
and ω  is the angular frequency.  
The linearized small-amplitude wave 
theory allows the summation of velocity 
potential, wave elevation, and water 
particle kinematics of the individual 

regular wave to form a random wave 
made up of a number of components. 
The generated synthetic random wave is 
considered to be adequately represented 
by a summation of linear harmonic 
regular waves. The series representation 
of sea surface elevation is given by the 
equation 

∑
=

φ+ω−=η
k

i
iiii txkAtx

1
)cos(lim),(      (24) 

iii SA ω∆ω= ηη )(2                         (25) 

 

where Ai is the amplitude of the i-th 
component wave, ki is the wave number 
of the i-th component wave, iω  is the 
wave frequency of the i-th component 
wave, φ  is the phase angle of the i-th 
component wave, varying between 0 and 
2π, x is the horizontal distance from the 
origin and Sηη(ω) is the one-sided sea 
surface elevation PSDF. Based on these 
studies, the asymptotic approach to the 
Gaussian distribution is found to be slow 
for a number of component waves over 
about 75. The time interval ∆t is set to 
satisfy the condition max5/2 ωπ≤∆t . 
Keeping in view the natural period of the 
structure, the value of ∆t is chosen as 0.5 
s, which is much smaller than required. 
The length of the simulated wave record 
is controlled so that about 4096 data 
points are generated in one run. For the 
random wave, when the response is to be 
found by simulation, the total period of 
simulated loading of 2048 s is chosen 
which gives 4096 (212) data points.  
Once the sea surface elevation time 
history η(x,t) is known from Eq. (24), 
the time histories of the water particle 
velocity and acceleration are computed 
by wave superposition, according to 
Airy’s linear wave theory. The 
horizontal water particle velocity 

),,( tzu ξ& and the vertical water particle 
velocity ),,( tzw ξ& are given as: 
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And related accelerations are: 
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where: 

xx αξ= cos                                      (30-1) 

xy αξ= sin                                      (30-2) 

where ki is the i-th component wave 
number, y is the vertical distance at 
which the wave kinematics is calculated, 
d is the water depth, η is the sea surface 
elevation, which is equal to η(x,t) given 
by Eq. (24). where zα  is angle of the 
axis to vertical and xα  is angle of the 
cylinder projection to the x-axis. The 
wave forces acting on the cylindrical 
member of the TLP structure are 
obtained by using modified Morison’s 
equation, which takes relative velocity 
and acceleration between the structure 
and water particles into account.   
For cylindrical structural components, 
oriented in an arbitrary direction, the 
velocity vector { } { }zyx

T
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acceleration vector { } { }zyx
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acting perpendicular to the cylindrical 
axis, arise from the vectors of the orbital 
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&&& ,0,= and accelerations 
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From this, one deduces the velocity and 
acceleration components  
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and the velocity magnitude 
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The components of the wave force per 
unit length are as follows 
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cu&  is the current velocity and β  is the 
angle of current direction with x-axis 

β= cosccx uu &&                                      (36-1) 

β= sinccy uu &&                                      (36-2) 
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x, y and z are displacements of the structure 
along with the x, y, and z axes respectively. 
The force vector {F(t)} is given as: 

T
zyxzyx MMMFFFtF },,,,,{)}({ =      (38) 

The hydrodynamic force attracted by the 
members in the surge, sway and heave 
degrees of freedom are computed and 
designated as xF , yF and zF , 
respectively.  
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hullidColumnv zz
FFFHeave ][][F  Force z ++== (41) 

where Fx, Fy and Fz are the total forces in 
the x, y and z directions. ∑ =

n

k 1
is the 

summation over the vertical column of 
the drag force FD(K) and inertia force 
FI(K). K is the number segments of the 
of columns. The  moment of these forces 
about the x, y and z axes are designated 
as xM , yM  and zM , respectively. The 
wave induced loading in the x, y and z 
directions on the vertical columns and 
hull causes surge, sway and heave 
components. Drag and inertia loading on 
the hull and vertical column members 
also cause moments about the x, y and z-
axes, they are termed roll, pitch and yaw 
moments, respectively. The angle of 
wave incidence is denoted by α. 

xdF  and 

xiF  are the total drag and inertia forces 
in the x direction acting on the hull. 
Similarly, in the y direction, all the 
forces due to drag and inertia on the hull 
and columns induce total sway force 
Fy. zdF and 

ziF are the total drag and 

inertia forces on the hull in the vertical 
direction. Fv is the total vertical dynamic 
pressure forces on the column bottom.  
These horizontal and vertical drag and 
inertia forces cause moments about x, y 
and z axes, as under pitch moment 

{ }

Columnphullhv

Column

n

k
ID

xxx
MMM

kMkM

][][

sin)()(M
1

x

+++

α⎥
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+= ∑

=     (42) 

roll moment, 
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yaw moment,  

∑
=

+=
n

k
kIDz ykFkFM

1
)]()([                  (44) 

MD and MI are the moments due to 
horizontal forces on the TLP columns 
about axes perpendicular to the wave 
direction. 

xhM , 
xvM , and 

yhM , 
yvM  are 

the moments due  to horizontal and 
vertical hull forces about the x and y 
axes, respectively. 

xpM  and 
ypM  are the 

moments of the dynamic pressure, on the 
column bases, about the x and y axes. 

ky is the moment arm from the kth 
column  for moments about the z-axis. 
 
The modified Euler method 
(MEM) 

Euler method is rarely used but 
knowing it is a staring point toward 
further examination of the methods of 
this class. The graphic presentation is 
shown in figure 4.  
There is a known point of coordinates 
( mx , my ) lying on the wanted curve. A 
curve with a slope is drawn through this 
point 

),( mmm yxfy =′                                     (45) 
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We can assume that 1+my  equals to the 
ordinate at the crossing point of L1 and 
the straight line 

hxxx mm +== +1 . The equation of the 
straight line L1 is: 

)( mmm xxyyy −′+=                             (46) 

and since 

hxx mm =−+1                                        (47) 

then 

)(1 mmmm yxhfyy −+=+                        (48) 

The error in 1+= mxx  is designated on the 
figure by e.  
The last formula assigns the Euler 
method. Its characteristic is the big error 
from disruption and instability in some 
cases, i.e. a small error from rounding 
increases with the increase of x.  
The modified Euler method is based on 
finding the average value of the slopes of 
the tangent lines in the points ( mx , my ) 
and ( hxm + , mm yhy ′+ ). Graphically the 
method is presented on Fig. 5. 
 

     
Fig. 4- Geometric presentation of Euler 

method 
 

 

 
Fig. 5- Geometric presentation of the MEM 

 
The slope of the straight line L is: 

[ ]),(),(
2
1

),,(

mmmmm

mm

yhyhxfyxf

hyx

′+++

=Φ
         (49) 

where: ),( mmm yxfy =′  
The equation for L is assigned as: 

),,()( hyxxxyy mmmm Φ−+=                   (50) 

),,(1 hyxhyy mmmm Φ+=+                        (51) 

 

The last equations express the MEM. 
 
Application of MEM in 
structural dynamics 

Consider the numerical evaluation of the 
free-vibrational response of a linear, 
undamped, simple mass-spring system 
governed by the following differential 
equation: 

02 =ω+ xx&&                             (52) 

 

in which x is the displacement of the system; 
ω is the circular natural frequency of 
vibration of the system; and a dot superscript 
denotes differentiation with respect to time, 
t. Let nx  and nx& be the known displacement 
and velocity, respectively, of the system at 
time nt . This time is expressed in terms of a 
non-negative integer number, n, and a time 
step, t∆ , as tntn ∆= . By application of the 
MEM, the displacement and velocity of the 
system, 1+nx  and 1+nx& , at time tntn ∆+=+ )1(1 , 
are evaluated as follows. By using equation 
(52), compute 
 

nn xx 2ω−=&&                              (53) 
Then, compute 

txxx nnn ∆+=+ &&&& 1                            (54)  

 

Now there is two approaches in order to 
calculate 1+nx& . First approach is using only 
the velocity in time step n+1: 
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txxx nnn ∆+= ++ 11 &                            (55) 

 
The second one is averaging of velocities of 
two steps: 

txxxx nn
nn ∆

+
+= +

+ 2
1

1

&&
                           (56) 

If one uses the following equation  

txxx nnn ∆+=+ &1                                       (57) 

 

then the method is called Euler method. 
With the values of 1+nx  and 1+nx&  available, 
the procedure defined by equations (53)-(55 
or 56) may be repeated to compute the 
response of the system for subsequent 
discrete times larger than 1+nt . These 
computations can be carried out accurately 
by a proper implementation of the MEM. It 
is important to note that, in the MEM, the 
solution for 1+nx  is based on using the 
equilibrium equation at time nt . Therefore, 
the MEM is an explicit method. It is also 
important to note in equation (55) that the 
displacement 1+nx  is computed by using the 
velocity 1+nx& . If 1+nx& is replaced in equation 
(55) with nx& , then the procedure defined by 
equations (53)-(55) reduces to the well 
known standard Euler method, which is an 
unstable approach that should never be used 
for structural dynamics applications [2]. 

 
Stability analysis for the MEM 

the following characteristic equation is 
obtained: 

01)2( 222 =+λω∆−−λ t               (58)  

 

and the roots of equation (58), λ1 and λ2 are 
2/12222

1 )4(5.0)5.01( −ω∆ω∆+ω∆−=λ ttt (59) 

2/12222
2 )4(5.0)5.01( −ω∆ω∆−ω∆−=λ ttt (60) 

 

There are three important cases: in Case l, 
the roots are real-valued and distinct; in 
Case 2, the roots are real-valued and equal; 
and in Case 3, the roots are complex-valued 
quantities. Cases 1 and 2 lead to unstable 

solutions for nx ; and Case 3, which leads to 
stable solutions, is obtained if  

422 <ω∆t                                         (61) 

 
This expression gives the condition for the 
stability of the MEM and may be 
reformulated as  

π
<∆

Tt                                          (62) 

 

in which ωπ= /2T  is the natural period of 
vibration of the system. Therefore, the MEM 
is stable only when equation (62) is 
satisfied. 
Similar calculation and considering eq. (56) 
instead of (55) results in 

π
<∆

Tt 2                                         (63) 

 
Because of large displacement of TLP and 
nonlinear terms in exciting force, the 
equation of motion of TLP is strongly 
nonlinear and the exciting wave force is 
response dependent as well. Convergence 
and stability of the MEM has been 
investigated both analytically and 
numerically [17]. As a brief review it is 
presented the results of a case study 
investigated by Tabeshpour et al.  
Eigenvalue analysis results the following 
periods: Surge:  72.8 sec; Sway:  72.8 sec ; 
Heave: 2.44 sec; Roll: 2.16 sec; Pitch: 2.16 
sec; and  Yaw: 87.8 sec [17]. Deformations 
and accelerations of all degrees of freedom 
are illustrated in Figs. 6 and 7for 500 
seconds. However the initial values are 
really high but after about 200 seconds the 
structural responses reach to a steady state. 
The more the period the fewer cycles 
required to reach to the steady state.  
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Fig. 6- Time history of displacements   
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 Fig. 7- Time history of accelerations  

Numerical Study 
A TLP in 400 m deep water has been 

chosen for the numerical study. The 
characteristics of the TLP under study 
are: 
Diameter of Columns(m), mDc 18= ; 
Diameter of Pontoon(m), mD 12= ; 
Pre-tension, KNET 555.00 = ; 
Length=90 m;  
Tether tensions are assumed to be 
equally distributed in all the four tethers. 
TLP structure is assumed to behave like 
a rigid body. The stiffness matrix 
developed takes into account large 
deformations and other nonlinearities 
like tether tension, etc. And:  

sec15,10 == zs TmH  
The angle of incident wave with x 
direction is o30 . 
Eigenvalue analysis results the following 
periods: 
Surge:  78.7 sec (0.08 rad/sec); 
Sway:  78.7 sec (0.08 rad/sec); 
Heave: 2.0 sec (3.14 rad/sec); 
Roll: 1.8 sec (3.49 rad/sec); 
Pitch: 1.8 sec (3.49 rad/sec); and  
Yaw: 74.2 sec (0.085 rad/sec). 
Based on the mentioned formulation, 
random surface elevation has been 
derived.  
Then nonlinear dynamic analysis has 
been carried out and useful results have 
been achieved. Displacement of various 
degrees of freedom is illustrated in Fig. 
(8). It is seen low and high frequency 
component of motions illustrating the 
wave and structural period. In surge 
motion there is approximately 7 cycles 
in 500 seconds. It means that every 
global cycle has been occurred in time 
equal to surge period (78.7 sec). Similar 
result is seen for sway, roll, pitch and 
yaw motions. 
A smooth motion occurred in 15 sec ( zT ) 
is seen in surge, sway, heave and yaw 
motions. Because of coupling between 
heave and surge, heave motion is 
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affected by the frequency of surge 
degree of freedom. But in roll and pitch 
the period of high frequency component 
is equal to 1.8 sec (roll and pitch period). 
Also it is seen that yaw rotation is more 
than that of pitch and roll, because of no 
restriction in yaw degree of freedom.  
An important parameter for desired 
serviceability, is acceleration. This 
parameter is shown in Fig. (9). The 
importance of acceleration goes back to 
the human and equipment sensitivity to 
vertical acceleration. Heave, roll and 
pitch accelerations are important to study 
and investigate the serviceability and 
performance of the system. A 
phenomenon similar to beating is clear 
in roll and pitch accelerations. The 
period of beating is equal to the 
structural period of surge and sway (78.7 
sec). Such phenomenon is not seen in 
yaw motion because the period of yaw 
very long (74.2 sec).  
A smooth motion occurred in 15 sec ( zT ) 
is seen in surge, sway and yaw motions. 
The period of high frequency component 
in heave degree of freedom is equal to 2 
sec (heave period) and similarly for roll 
and pitch motion the period of 
acceleration is equal to 1.8 sec (roll and 
pitch period) 
In order to get a deep view on energy of 
motion one can use power spectral 
density (PSD) diagrams of various 
degrees of freedom (Fig. 10). The 
significant amplitude of surge and sway 
motion occur in the neighbor of 0.8 
rad/sec (related to surge and sway period 
equal to 78.7 sec). Similar results are 
seen for other degrees of freedom 
because of coupling with surge and 
sway. There is a clear peak in frequency 
equal to 0.42 rad/sec related to zT .  
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Fig. 8- Time history of Displacements  
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Fig. 9- Time history of acceleration 
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Fig. 10- PSD of displacements  

 
 
Conclusion  

The nonlinear dynamic response of 
TLP under random sea wave loads was 
investigated considering nonlinearities. 
The simple modified Euler method was 
proposed as a numerical procedure 
which can be effectively used for the 
analysis of the dynamic response of 
structures in time domain for TLPs. The 
analyses were carried out in both time 
and frequency domains via a computer 
program developed for the analysis and 
design optimization of TLP. The time 
history of random wave is generated 
based on Pierson - Moskowitz spectrum 
and it acts on the structure in arbitrary 
direction. The hydrodynamic forces are 
calculated using the modified Morison 
equation according to Airy’s linear wave 
theory. This kind of analysis is necessary 
to check the response of designed TLP 
under environmental loads and fatigue 
studies as well. Also such results are 
used to optimization of both hull 
geometry and tendon pretensions.  
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