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ABSTRACT: Tension-Leg Platform (TLP) is a vertically moored floating structure. The platform is permanently moored 
by tendons. Surge equation of motion of TLP is highly nonlinear because of large displacement and it should be solved with 
perturbation parameter in time domain. This paper compare the dynamic motion responses of a TLP in regular sea waves 
obtained by applying three method in time domain using MATLAB soft ware. In this paper Lindstedt- Poincare method (L-P 
method) is used to solve nonlinear differential equation of surge motion considering first-order perturbation. Also modified 
Euler method (MEM) is used for solving nonlinear equation of motion as numerical method and ordinary differential equation is 
used for linear equation of motion (without nonlinear term). The results were obtained as responses represent good accordance 
between results of L-P method and MEM.
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INTRODUCTION
Compliant offshore structures are used for oil 

exploitation in deep water. The surge motion equation 
of tension leg platform has nonlinear term. The high 
nonlinear surge motion equation must be solved in time 
domain by rising force on TLP. The hydrodynamic 
forces are calculated using the Morison equation 
according to Airy’s linear wave theory for different 
waves condition. The responses obtained from linear 
motion equation and those achieved from analytical 
method via perturbation method for nonlinear status 
are compared with numerical results. Perturbation 
techniques (Nayfeh, 1973; Kevorkian and Cole, 
1981) are used to solve nonlinear motion equation 
in time domain. Many studies have been carried out 
to understand the structural behavior of a TLP and 
to determine the effect of several parameters on the 

dynamic response and average life time of the structure 
(Ahmad, 1996; Jain, 1997; Chandrasekaran and Jain, 
2002). A comprehensive study on the results of tension 
leg platform responses in random seas, considering all 
structural and excitation nonlinearities, is presented 
by Tabeshpour et al. (2006). First order perturbation 
solution for axial vibration of tension leg platforms, is 
presented (Golafshani et al., 2007). An analytical heave 
vibration of a TLP with radiation and scattering effect 
for damped systems has been presented (Tabeshpour et 
al., 2006). Surge motion analysis of TLP under linear 
wave via perturbation method is presented (Tabeshpour 
and Shoghi, 2011). Many of the phenomena around 
us are inherently non-linear and are expressed or 
described as nonlinear equations. Since the advent of 
digital computers, each day is easier to solve linear 
equations and this is while there is no exact answer 
for many nonlinear equations. In many cases, finding 
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the analytical solution of nonlinear equations is much 
more difficult than obtaining the numerical solutions. 
But now with advances in computer hardware and 
having very powerful software such as Maple, 
Mathematica and MATLAB which are working with 
symbolic variables it is getting easy to solve the most 
of equations. Generally numerical solution of nonlinear 
equations can be obtained by sophisticated computer 
calculations. In comparison to numerical method, 
easier solution of non-linear problems is advantage of 
analytical solution. Essentially all physical systems are 
nonlinear. Most of assumptions and approximations 
are presented in way that mathematical problem 
governing the behavior of the system is linear. Because 
solving linear problem is much easier than nonlinear 
one. Because the superposition is not applicable in 
nonlinear systems, Analysis of nonlinear systems is 
very complicated in comparison to linear systems. 
Consequently in nonlinear system:

1- Homogeneous Solving of nonlinear differential 
equation of second order, is not obtained from 
combination of the two independent linear solution.

2- The general solution of nonlinear differential 
equations cannot be written as the sum of the particular 
and homogeneous solutions, which is independent of 
initial conditions.

3- The linear combination cannot be used for adding 
forced response to combination of stimulations.

4- Because convolution integral is calculated by 
using a principle superposition, it cannot be used 
for nonlinear systems. There is no equivalent to the 
convolution integral in nonlinear systems.

5- The Laplace transform cannot be used to obtain 
the solution of nonlinear differential equations.

MATERIALS AND METHODS
Equation of Motion

Structural modeling of a TLP as a moored structure 
is shown in Fig. 1. Because the buoyancy of the TLP 
exceeds its weight, the vertical equilibrium of the 
platform requires taut moorings connecting the upper 
structure to the seabed. The extra buoyancy over the 
platform weight ensures that the tendons are always 

kept in tension.

0T  is Initial pre-tension in tethers. By giving an 
arbitrary displacement, x , in the surge direction (see 
Fig. 2 ), the increase in the initial pre-tension in each leg 
is given by:

( )2 2
0 0 0 0 0( ) , /tT k l x l k A E l∆ = + − =                            (1)

2 2
0sin /x l xθ = +                                                                   (2)

2
0 0 00.5 /sF T k x l≈ +                                                                 (3)

where:

x : displacement in the surge direction,

θ : angle between the initial and the displaced 
position of the tether,

0l : initial length of each tether,

E : Young’s modulus of the tether,

sF : tension of tendon,

0k : axial stiffness of tether,

T∆ : increase in the initial pre-tension due to the 
arbitrary displacement and

tA : cross-sectional area of tether. 
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Fig. 1: TLP as a moored structure
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Fig. 2: TLP by given arbitrary displacement

Considering equilibrium equation of surge motion 

the equation of motion in x  direction under wave take 

the form of:

x stF M x=∑                                                                             (4)

sin( )st s waveM x cx F F+ + =θ                                                       (5)

Substituting Eqs. (2) and (3) into Eq. (5), one obtains:

2 2
10

0 2
0 0 0

( ) ( ) (1 )
2 2st wave

k x x xM x T n F
l l l

−+ + + =                          (6)

n  is number of tendon.In the above equation 

Structural damping is assumed to be equal to zero and 

one can be approximated that by Eq. (7).

30 0
2

0 0

( ) ( )
2st wave

T nk
M x x x F

l l
+ + =                                                (7)

or
3

1 3st waveM x k x k x F+ + =                                                          (8)

That 1 0 0/k T l=  and 2
3 0 0/(2 )k nk l= , where stM , 1k  

and 3k
 
are structural mass, linear and nonlinear stiffens 

parameter, respectively. Fig. 3 represents mechanical 

modeled of TLP under harmonic force.
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Fig. 3: Structural modeling of TLP considering hardening spring

That Structural damping is assumed to be equal to 
zero. By giving an arbitrary displacement in the x  
direction, the forces in the each term of spring take the 
form of below. For linear and non-linear force are as 
follow, respectively.

( )
1

L
springF k x=                                                                              (9)

( ) 3
3

NL
springF k x=                                                                           (10)

The amount of elastic force for a given displacement 
is expressed as follows:

3
1 3springF k x k x= +                                                                   (11)

3k  is very small quantity rather than 1k , while 
nonlinear force due to nonlinear stiffness, 3

3k x , is 
remarkable in comparison to linear force, 1k x . In the 
following fig., the linear and nonlinear force of tendon 
versus displacement is shown.

Fig. 4: horizontal tendon force versus displacement

The potential energy function due to the presence 
of 4x  is not parabolic shape. Different forms of power 
and potential in below figure for systems with large 
displacement (worked in non-linear) are shown.
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Fig. 5: power and potential figure for systems with large 
displacement

If the spring is loaded with a force, Fig. 6a, and 
its deflection is measured then a force-displacement 
curve can be generated, such as that of Fig. 6b. 
Typically, the curve is a straight line for small range 
of force (linear range). The slope of this line is a 
constant called the stiffness coefficient of the spring k. 
Beyond the linear regime, the spring shows a nonlinear 
force- displacement relationship characterized by 
either increasing in stiffness (hardening behavior) or 
decreasing in stiffness (softening behavior) compared 
to the linear case.

 

Fig. 6 a: A schematic shows a spring being pulled by a force. 
b- A force- displacement curve showing a linear regime with a 
slope k ending with a possible nonlinear hardening or softening 

behaviours

In the following figure, considering 3 1/ 0.002k k =
, the influence of nonlinear term on large displacement 
is shown.

3 23
1 3 1

1

(1 )spring

kF k x k x k x x
k

= + = +                                          (12)

23
1

231

1 1

(1 )
1spring

Linear

kk x xF kk x
F k x k

+
= = +                                           (13)
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Fig. 7: proportion of total force to linear force
Wave force:

Wave force determination is significant for the design 
of an offshore structure. The geometry of the structure 
i.e. the ratio of size to the wave length, the hydrodynamic 
parameters and the rigidity of the structure, affect the 
wave load experienced by the structure. Depending 
on the type and size of the structure, different wave 
load determination approaches may need to be applied. 
Morison equation is applicable to a structure, which is 
small comparative to the wave length. The inertia and 
drag coefficients need to be determined experimentally 
and are considered as a constant usually. Values of 
inertia and drag coefficients are resented in below:

Table 1: values of inertia and drag coefficients

RoughSmooth

mCdCmCdC

1.21.051.60.65API

1.81.02.00.65SNAME

Comparison between linear and nonlinear models for surge motion of TLP
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Morison equation was established as the basis of 
wave load determination for offshore structures due to 
the simplicity of the implementation and programming. 
The existence of the structure will affect the wave field 
surrounding the structure. However, when the size of 
structure relative to the wave length is greater than 
0.2, Morison Equation is no longer applicable. Also 
the current effect was evaluated using the drag term 
of Morison equation. The linear Airy wave theory and 
Morison equation were used for the determination 
of the wave kinematics and wave force respectively. 
Also Morison equation expressed the wave force as a 
summation of inertia force and drag force. The water 
particle kinematics was determined by the following 
equations:

( , ) cos( )
2
Ht x kx t= −Ωξ                                                       (14)

2 /k L= π                                                                              (15)
The horizontal water particle velocity and 

acceleration at the vertical centerline of a circular 
cylinder at x = 0 are given by:

cosh( , ) cos( )
sinh

H kyu x t kx t
T kd

= −Ω
π                                        (16)

2

2

2 cosh( , ) sin( )
sinh

H kyu x t kx t
kdT

= −Ω
π

                                     (17)

Relation between ,k Ω and h are observed in follow 

equation:
2 tangk hkd=ω                                                                     (18)
that y  is vertical direction origin of sea bed, x  is 

surge direction, H  is wave height, L  is wave length, 
ξ  is wave level, Ω  is wave frequency, u  is water 
particle velocity, u  is water particle acceleration and 
k  is wave number. In deep water, / 0.5d L > , follow 
equation is used replace Eq. (18).

2 /(2 )L gT= π                                                                         (19)

Morison, et al. introduced a semi-intuitive equation 
to compute wave forces on elements immersed objects 
having characteristic dimensions that are small 
compared to the wavelength of the incident wave. 
Also it was observed in most of the reported studies 
that Morison equation was employed in the calculation 
of the wave loads to determine the dynamic responses 
for this structure. Wave forces due to sea wave on the 
members of TLP, calculated by Morison equation on 

TLP columns as below:

( )morison inertia drag column
F F F= +∑                                                  (20)

Assuming that the force coefficients Cm and Cd are 
constants and integrating over the still water depth On 
columns yields:

( )
2
d

morison m a
column

CF C u d C x d u x u x dyρ = ρ ν− ρ ν+ − − 
 

∑ ∫∫∫ ∫∫∫ ∫    (21)

add am C x d= ∫∫∫ ρ ν
                                                               (22)

that mC , aC  and dC  are inertia, added mass and 
drag coefficient addm  added mass on TLP columns and 
ν  is volume of column. Substituting Eq. (22) into Eq. 
(21) one can be obtained:

2

1

( )
2

y
d

morison m add
column y

CF C u d m u x u x dy
 
 = + + − −
 
 

∑ ∫∫∫ ∫
ρρ ν  

 
(23) 

Ignoring the drag force and substituting Eq. (23) 
into Eq. (8), one obtains:

3
1 3st add m

column column
M m x k x k x C u d 

+ + + = 
 

∑ ∑ ∫∫∫ ρ ν    (24)

Substituting Eqs. (17) into Eq. (24) one can be 

obtained:

2

1

3
1 3

2
2

2

2 cosh0.25 sin( )
sinh

st add
column

y

m c
column y

M m x k x k x

H kyC D kx t dy
kdT

 
+ + + = 

 
 
 −Ω
 
 

∑

∑ ∫
πρ π



(25)

1y  and cD are bottom level and diameter of columns 
and 2y  is still water level. The Morison equation may 
be integrated for a total depth-integrated force on a 
vertical circular cylinder by applying linear wave 
theory kinematics:

3
1 3

2 2
2 1

2

2 0.25 sinh sinh sin( )
sinh

st add
column

m

column

M m x k x k x

C H D ky ky kx t
T kd k

 
+ + + = 

 
 −  × −Ω  

  

∑

∑ ρ π π



    
(26)

2 3

2 2
2 1

2

2 0.25 (sinh sinh ) sin( )
sinh

n

m c

column
st add

column

x x x

C H D ky ky kx t
T kd k M m

+ + =

 
 

− × −Ω  
+     

∑
∑

ω ε

ρ π π



     
(27)

that 2
1 /( )n st add

column
k M m= + ∑ω  and 

3 /( )st add
column

k M m= + ∑ε .
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2 2
2 1

2

2 0.25 (sinh sinh )
sinh

c
m

column
st add

column

H D ky kyF C
T kd k M m

 
 

− =   
+     

∑
∑

π πρ      (28)

The surge motion equation can be written as:
2 3 sin( )nx x x F kx t+ + = −Ωω ε                                                

(29)

Considering origin of x on column 0x =  one can 
be obtained:

2 3 sin( )nx x x F t+ + = Ωω ε                                                      (30)
Where F ,ω  and ε  are the amplitude of wave, 

frequency of wave force and perturbation parameter 
respectively. L-P method is used to solve Eq. (30).

Solving methods
Lindstedt- Poincare method (L-P method):

Forced vibration equation of motion is as follows:

2 3 sin( )nx x x F t+ω + ε = Ω                                                       (31)

Perturbation method is used to solve Eq. (31). 
A solution in the form of an infinite series of the 
perturbation parameter ε  is assumed as follows:

2 3
0 1 2 3( ) ( ) ( ) ( ) ( ) ...x t x t x t x t x t= + ε + ε + ε +                               (32)

In this method the frequency of nonlinear vibration 
depends on the perturbation parameter:

2 2 2 3
1 2 3 ...nω = ω + εα + ε α + ε α +                                              (33)

where iα are as yet undefined functions of 
amplitude. In this study, the first-order perturbation 
method is used to solve the differential equation, 
therefore the response and frequency of vibration are 
considered as follow:

0 1( ) ( ) ( ) ,x t x t x t= + ε                                                 (34)

2 2
1 .nω = ω + εα                                                                        (35)

Substituting Eqs. (34) and (35) into Eq. (31), one 
obtains:

2 3
0 1 1 0 1 0 1( ) ( )( ) ( ) sin( )x x x x x x F t+ ε + ω − εα + ε + ε + ε = Ω       (36)

Since the perturbation parameter ε  could have 
been chosen arbitrarily, the coefficients of the various 
powers of ε  must be equated to zero. This leads to a 
system of equations which can be solved successively:

2
0 0 0 0sin( ), (0) (0) 0x x F t x x+ω = Ω = = 

      
(37)

2 3
1 1 1 0 0 1 10, (0) (0) 0x x x x x xε +ω −α + = = =              (38)

The solution of Eq. (37), subjected to the initial 
conditions 0 (0) 0x =  and 0 (0) 0x =  is:

0 2 2 (sin sin )Fx t tΩ
= Ω − ω

ωω −Ω
                                          (39)

Substituting Eq. (39) into the right-hand side of Eq. 
(38), one obtains:

2
1 1 1 2 2

3
3 3

3

2 2 3
2 2

1 1

(sin sin )

sin sin
,

3 sin sin 3 sin sin

(0) (0) 0

Fx x t t

t t
F

t t t t

x x

Ω
+ω = α Ω − ω

ω −Ω ω
 Ω 

Ω − ω  ω    − ×  ω −Ω  Ω Ω    − Ω ω − ω Ω    ω ω    
= =



    

(40)

Using:

2sin 0.5(1 cos 2 )θ = − θ                                                  (41-a)

1 2 1 2 1 2sin( ) cos( ) 0.5(sin( ) sin( ) )t t t tθ θ = θ − θ + θ + θ     (41-b) 

3sin 0.75sin 0.25sin 3θ = θ− θ                                   (41-c)

Eq. (40) can be rewritten as:

( )

( )

2
1 1 1 2 2

2

3 3

3

2 2

2

(sin sin )

3 1 1sin sin 3
2 2 4

3 1sin sin 3
4 4

3 sin( 2 ) sin( 2 )
4

3 sin( 2 ) sin( 2 )
4

Fx x t t

t t

t tF

t t

t t

Ω
+ω = −α Ω − ω −

ω −Ω ω
  Ω   + Ω − Ω  ω    
 Ω Ω   
− ω + ω       ω ω   ×   ω −Ω   Ω

ω− Ω + ω+ Ω
ω

 Ω − Ω − ω + Ω + ω ω  



1 1(0) 0, (0) 0x x










= =   

(42)

The forcing term sin( )tω  leads to a secular term 
sint tω  in the solution of x1. Such terms violate the 

initial stipulation that the motion is to be periodic. 
Therefore one must impose the following condition:

( )22 2 2
1 0.75( / ) /( )Fα = Ω ω ω −Ω                                          (43)

And Substituting Eq. (43) into Eq. (35), the vibration 
frequency becomes:

2 2 2 2 2 20.75 ( / ) ( /( ))n Fω = ω + ε Ω ω ω −Ω                                 (44)
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The frequency is found to increase with ε , as 
expected because of increasing axial stiffness of tether.

2 2/( )R F= ω −Ω                                                                    (45)

considering 3 2
1 1.5 (0.5 ( / ) )D R R= α − + Ω ω , 3

2 / 4D R=  
3

3 0.25( / )D R= − Ω ω , 3 2
4 5 0.75 ( / )D D R= = Ω ω

and 3
6 7 0.75 ( / )D D R= = Ω ω . also 1φ = Ω , 2 3φ = Ω , 

3 3φ = ω, 4 ( 2 )φ = ω− Ω , 5 ( 2 )φ = ω+ Ω , 6 ( 2 )φ = Ω− ω , 

7 ( 2 )φ = Ω+ ω . Considering Eq. (42) is as follows:

7
2

1 1 1 1
1

sin( ) , (0) 0, (0) 0i i
i

x x D t x x
=

+ ω = φ = =∑            (46)

Now imposing the initial conditions 1 1(0) 0, (0) 0x x= =

, the homogenous solution of Eq. (46) is as follow. 

( )
1 1 2sin( ) cos( )hx C t C t= ω + ω                                                 (47)

The particular solution of Eq. (46) is:

7
( )
1

1
sin( )p

i i
i

x d t
=

= φ∑                                                                 (48)

where 2 2/( )i i id D= ω −φ . Now the solution of Eq. 
(46) is as follows:

7
( ) ( )

1 1 1 1 2
1

( ) sin( ) cos( ) sin( )h p
i i

i
x t x x C t C t d t

=
= + = ω + ω + φ∑  (49)

Imposing the initial conditions 1 1(0) 0, (0) 0x x= = , 
results are

1 2(0) 0 0x C= → =                                                                (50)

7 7

1 1 1
1 1

1(0) 0 0i i i i
i i

x C d C d
= =

= → ω+ φ = → = − φ
ω

∑ ∑      (51)

consuming 0 1d C=  and 0φ = ω , now the solution of 
Eq. (46) is as follows:

7

1
0

( ) sin( )i i
i

x t d t
=

= φ∑                                                                (52)

Substituting Eqs. (52) and (39) into Eq. (34), the 
first-order perturbation solution of Eq. (31) becomes:

7

0
0

( ) ( ) cos( )i i
i

x t x t d t
=

= + ε φ∑
                                                  (53)

The modified Euler method (MEM)

Euler method is rarely used but knowing it is 

a starting point toward further examination of the 

methods of this class. The graphic presentation is 

shown in Fig. 9. There is a known point of coordinates 

( my , mx ) lying on the wanted curve. A curve with a 

slope is drawn through this point

),( mmm yxfy =′                                                                     (54)

We can assume that 1+my  equals to the ordinate 

at the crossing point of L1 and the straight line 

hxxx mm +== +1 . The equation of the straight line 

L1 is:

)( mmm xxyyy −′+=                                                            (55)

and since hxx mm =−+1  then:

)(1 mmmm yxhfyy −+=+                                                     (56)

The error in 1mx x +=  is designated on the figure 

by e. The last formula assigns the Euler method. Its 

characteristic is the big error from disruption and 

instability in some cases, i.e. a small error from 

rounding increases with the increase of x. The modified 

Euler method is based on finding the average value of 

the slopes of the tangent lines in the points ( mx , my

) and ( hxm + , mm yhy ′+ ). Graphically the method is 

presented on Fig. 10.

Fig. 8: Geometric presentation of Euler method

Int. J. Mar. Sci. Eng., 2 (2), 153-162, Spring 2012
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Fig. 9: Geometric presentation of the MEM

The slope of the straight line L is:

[ ]1( , , ) ( , ) ( , )
2m m m m m m mx y h f x y f x h y hy′Φ = + + +     (57)

where ),( mmm yxfy =′ . The equation for L is 
assigned as:

),,()( hyxxxyy mmmm Φ−+=                                           (58)

1 ( , , )m m m my y h x y h+ = + Φ                                                     (59)

The last equations express the MEM.

RESULTS AND DISCUSSION
A numerical study has been carried out to understand 

the effect of parameters ε  and the amplitude of 
vibration. The period of the structure is about equal 
to 77 second, therefore the linear frequency of system 
is 0.0812nω =  rad/s, and the initial conditions are 

(0) 0x = and (0) 0x =  imposed. The Table 2 represents 
the character of TLP for compare of results.

Table 2: Character of square TLP

dimensionvaluesymbolcharacters

kN209500stMweight

kN334000bFBuoyancy

kN1245000Tpre-tension

m14.2cDColumns diameter

m11PDPanton diameter

m58.3bPTLP length

m0.4DTendon diameter

m471lTendon length

kN/m58060kTendon stiffness

m500dWater depth
-4nNumber of leg
-2CmInertia coefficient

kg/m31024ρWater density

Table 3 represent the maximum displacement of 
motion for values of wave period 8waveT s=  and 
different wave heights, increasing in amplitude force 
due to wave height, the maximum response is measured 
by different methods.

Table 3: obtained errors between linear and l-p method comparing 
mem

8waveT s=

( )H m

Maximum surge response (m) Error %

Linear L-P 
method MEM

Linear 
& 

MEM

L-P & 
MEM

8 3.45 3.42 3.45 0 <1
10 4.32 4.26 4.29 0.69 <1
12 5.19 5.12 5.13 1.16 <1
14 6.05 5.94 5.97 1.34 <1
16 6.91 6.77 6.79 1.76 <1

Above table shows that the difference between linear 
method and MEM for all assumed wave heights is less 
than 9% and the difference between L-P method and 
MEM is less than 1% which shows good agreement 
between L-P method and MEM and their difference 
with linear status.

Fig. 10: Obtained response amplitude by different method for 
Twave=8 s

Fig. 10 represent response obtained from linear 
method is clearly more than MEM responses. It is due 
to ignoring of hardening nonlinear term which leads to 
decreasing the response amplitude. Also the obtained 
responses from L-P method have very good agreement 
with the numerical method discussed. Table 4 represent 
the maximum displacement of motion for values of 
wave period 10waveT s=  and different wave heights, 

Comparison between linear and nonlinear models for surge motion of TLP
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increasing in amplitude force due to wave height, the 
maximum response is measured by different methods.

Table 4: obtained errors between linear and l-p method comparing 
mem

10waveT s=

( )H m

Maximum surge response (m) Error %

Linear L-P 
method MEM  Linear & 

MEM
L-P & 
MEM

8 8.71 8.45 8.5 2.47 <1

10 10.88 10.41 10.43 4.31 <1

12 13.08 12.35 12.38 5.65 <1

14 15.25 14.19 14.23 7.16 <1

16 17.42 15.95 15.99 8.94 <1

Above table shows that the difference between 
linear method and MEM for all assumed wave heights 
is less than 9% and the difference between L-P method 
and MEM is ever less than 1% which shows good 
agreement between L-P method and MEM and their 
difference with linear status.

Fig. 11: Obtained response amplitude by different method for 
Twave=10 s

Fig. 11 represent response obtained from linear 
method is clearly more than MEM responses. It is due 
to ignoring of hardening nonlinear term which leads to 
decreasing the response amplitude. Also the obtained 
responses from L-P method have very good agreement 
with the numerical method discussed. Table 5 represent 
the maximum displacement of motion for values of 
wave period 12waveT s=  and different wave heights, 

increasing in amplitude force due to wave height, the 
maximum response is measured by different methods.
Table 5: obtained errors between linear and l-p method comparing mem

12waveT s=

( )H m

Maximum surge response (m) Error %

Linear L-P 
method MEM Linear 

& MEM
L-P & 
MEM

8 15.49 14.41 14.59 6.16 1.23

10 19.35 17.50 17.7 9.32 1.12

12 23.24 20.43 20.86 11.40 2.06

14 27.12 23.14 22.5 20.53 2.84

16 30.76 22.65 24.59 25.09 7.88

Above table shows that the difference between linear 
method and MEM for all assumed wave heights is less 
than 25% and the difference between L-P method and 
MEM is less than 8% which shows good agreement 
between L-P method and MEM and their difference 
with linear status.

Fig. 12: Obtained response amplitude by different method for 
Twave=12 s

Fig. 12 represent response obtained from linear 
method is clearly more than MEM responses. It is 
due to ignoring of hardening nonlinear term which 
leads to decreasing the response amplitude. Also the 
obtained responses from L-P method have very good 
agreement with the numerical method discussed. Fig. 
13 represents errors obtained between linear method 
and L-P method comparing MEM. Increase in wave 
period and wave height causes the governing equation 
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of TLP motion to be more nonlinear and linear method 
not to be applicable in this status.

Fig. 13: Obtained error

Obtained errors from linear method are clearly more 

than L-P method in above mentioned status.

CONCLUSION
Equation of surge motion of TLP is highly nonlinear 

under large displacement because of nonlinear stiffness. 
When displacement of TLP is small, linear differential 
equation of TLP is applicable as governing equation of 
TLP motion and has the same result for three discussed 
methods. Also, so long as mass displacement doesn’t 
cause remarkable increase in nonlinear spring force 
in comparison to linear spring force the L-P method 
has very good agreement with the numerical method. 
Increasing in amplitude of response to cause error 
obtained from linear method is clearly more than L-P 
method. According to this paper, the procedures can 
be repeated considering damping effect for free and 
forced vibration cases.
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