مل چندمثال از کابل کیا

SAP2000

تابش پور دانشگاه صنعتی شریف

SAMPLE PROBLEM 5/16

A 100-ft length of surveyor's tape weights 0.6 lb. When the tape is stretched between two points on the same level by a tension of 10 lb at each end, calculate the sag h in the middle.

Solution. The weight per unit length is $\mu = 0.6/100 = 0.006$ lb/ft. The total length is 2s = 100 or s = 50 ft.

$$T^2 = \mu^2 s^2 + T^2$$

$$[T^2 = \mu^2 s^2 + T_0^{\ 2}] \hspace{1cm} 10^2 = (0.006)^2 \, (50)^2 + T_0^{\ 2}$$

$$T_0 = 9.995 \text{ lb}$$

$$[T = T_0 + \mu y]$$

$$10 = 9.995 + 0.006h$$

$$h = 0.750$$
 ft or 9.00 in.

Ans.

1 An extra significant figure is displayed here for clarity.

SAMPLE PROBLEM 5/17

The light cable supports a mass of 12 kg per meter of horizontal length and is suspended between the two points on the same level 300 m apart. If the sag is 60 m, find the tension at midlength, the maximum tension, and the total length of the cable.

Solution. With a uniform horizontal distribution of load, the solution of part (b) of Art. 5/8 applies, and we have a parabolic shape for the cable. For h = 60 m, L = 300 m, and $w = 12(9.81)(10^{-3})$ kN/m the relation following Eq. 5/14 with $l_A = L/2$ gives for the midlength tension

$$\left[\,T_0 = \frac{wL^2}{8h}\,\right] \hspace{1.5cm} T_0 = \frac{0.1177(300)^2}{8(60)} = 22.1 \; \mathrm{kN} \hspace{1.5cm} \text{Ans.}$$

The maximum tension occurs at the supports and is given by Eq. 5/15b. Thus,

$$T_{\rm max} = \frac{12(9.81)(10^{-3})(300)}{2} \, \sqrt{1 + \left(\frac{300}{4(60)}\right)^2} = 28.3 \; {\rm kN} \qquad \qquad {\it Ans}. \label{eq:Tmax}$$

The sag-to-span ratio is 60/300 = 1/5 < 1/4. Therefore, the series expression developed in Eq. 5/16a is convergent, and we may write for the total length

$$S = 300 \left[1 + \frac{8}{3} \left(\frac{1}{5} \right)^2 - \frac{32}{5} \left(\frac{1}{5} \right)^4 + \cdots \right]$$

$$= 300[1 + 0.1067 - 0.01024 + \cdots]$$

$$= 329 \text{ m}$$
Ans.

Helpful Hint

1 Suggestion: Check the value of T_{max} directly from the free-body diagram of the right-hand half of the cable, from which a force polygon may be drawn.

 $\frac{7.06}{}$

24.0

 T_0

SAMPLE PROBLEM 5/18

Replace the cable of Sample Problem 5/17, which is loaded uniformly along the horizontal, by a cable which has a mass of 12 kg per meter of its own length and supports its own weight only. The cable is suspended between two points on the same level 300 m apart and has a sag of 60 m. Find the tension at midlength, the maximum tension, and the total length of the cable.

Solution. With a load distributed uniformly along the length of the cable, the solution of part (c) of Art. 5/8 applies, and we have a catenary shape of the cable. Equations 5/20 and 5/21 for the cable length and tension both involve the minimum tension T_0 at midlength, which must be found from Eq. 5/19. Thus, for x=150 m, y=60 m, and $\mu=12(9.81)(10^{-3})=0.1177$ kN/m, we have

$$60 = \frac{T_0}{0.1177} \bigg[\cosh \frac{(0.1177)(150)}{T_0} - 1 \bigg]$$
 or
$$\frac{7.06}{T_0} = \cosh \frac{17.66}{T_0} - 1$$

0.31 Solution $T_0 = 23.2 \text{ kN}$ 0.30 $(\cosh \frac{17.66}{T_0} - 1)$ 0.28 $(\cosh \frac{17.66}{T_0} - 1)$

 T_0 , kN

0.33

0.32

This equation can be solved graphically. We compute the expression on each side of the equals sign and plot it as a function of T_0 . The intersection of the two curves establishes the equality and determines the correct value of T_0 . This plot is shown in the figure accompanying this problem and yields the solution

$$T_0 = 23.2 \text{ kN}$$

Alternatively, we may write the equation as

$$f(T_0) = \cosh \frac{17.66}{T_0} - \frac{7.06}{T_0} - 1 = 0$$

and set up a computer program to calculate the value(s) of T_0 which renders $f(T_0)=0$. See Art. C/11 of Appendix C for an explanation of one applicable numerical method.

The maximum tension occurs for maximum y and from Eq. 5/22 is

$$T_{\text{max}} = 23.2 + (0.1177)(60) = 30.2 \text{ kN}$$
 Ans.

1 From Eq. 5/20 the total length of the cable becomes

$$2s = 2\frac{23.2}{0.1177} \sinh \frac{(0.1177)(150)}{23.2} = 330 \text{ m}$$
 Ans.

Helpful Hint

Note that the solution of Sample Problem 5/17 for the parabolic cable gives a very close approximation to the values for the catenary even though we have a fairly large sag. The approximation is even better for smaller sag-to-span ratios.